
 

 

  
Abstract—The optimal control problem of the metal 

solidification in casting is considered. The process is modeled by a 
three-dimensional two-phase initial-boundary value problem of the 
Stefan type. The mathematical formulation of the optimal control 
problem for the solidification process is presented. This problem was 
solved numerically using gradient optimization methods. The 
gradient of the cost function was computed by applying the fast 
automatic differentiation technique, which yields the exact value of 
the cost function gradient for the chosen discrete version of the 
optimal control problem. 
 

Keywords—Adjoint problem, heat equation, optimal control, 
Stefan problem. 

I. INTRODUCTION 
HE class of problems in which a material under analysis 
transforms from one phase into another with heat release 

or absorption is of great theoretical and practical interest. Such 
problems arise in studies of many phenomena, among which 
melting and solidification are the most important and 
widespread.  

The problems arising in practice do not reduce to the 
description of processes involving phase transitions, but also 
include control of these processes. Control of processes 
involving phase transitions is interpreted as the choice of some 
process parameters (controls) in such a way that the process is 
as close as possible to a given scenario; for example, the 
behavior of the liquid-solid phase boundary or a function of 
temperature in some domain is closest to a required behavior. 
An effective approach to solving this type of problems was 
developed and applied in practice by the authors of this article. 
The efficiency of the method is explained by the simultaneous 
use of three basic elements.  

First, during the solution of the initial-boundary value 
problem that describes the process of heat transfer, the 
statement of a boundary value problem in terms of temperature 
is reformulated in terms of enthalpy. The reason for this is the 
fact that, as one intersects the phase boundary, the temperature 
changes continuously while the enthalpy undergoes a jump 
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change.  
The second element of this approach is a special iterative 

algorithm proposed by the authors for solving nonlinear 
systems of finite-difference equations obtained as a result of 
approximating the initial-boundary value problem. The new 
iterative algorithm is much more efficient than algorithms used 
earlier: the modified Jacobi method and the modified Gauss-
Seidel method.  

Optimal control problems for thermal processes with phase 
transitions are usually solved numerically using gradient 
methods. To ensure the efficiency of a gradient method, the 
gradient of the cost function has to be computed to high 
accuracy. The third element of the proposed approach is 
connected with the fact that the gradient of the cost function of 
the optimal control problem is calculated using the Fast 
Automatic Differentiation technique ([1]). This method offers 
canonical formulas that produce the exact value of the gradient 
in a discrete optimal control problem. In [2] is formulated and 
substantiated the statement that the time required to find the 
components of the gradient of the objective function in optimal 
control problems for thermal processes with phase transitions 
by this method does not exceed the time of calculating two 
values of the function. 

The problem examined in this article also relates to the 
problems of control of thermal processes with the phase 
transitions. For several years the authors of this paper 
investigated the different aspects of this complex and 
practically interesting problem.  

In [3] a mathematical model of metal solidification in the 
considered setup was suggested, a finite-difference 
approximation of the direct problem (of determining the 
temperature at each point of the object and identifying the 
solidification front) was proposed, and an algorithm for 
finding the numerical solution of the direct problem was 
described. In [4] the choice of a cost functional that models the 
technological requirements for metal solidification was 
discussed and optimal control problems for this process were 
formulated.  

In [5] the optimal control of metal solidification was 
considered in the case where the mold has the simplest shape, 
namely, a parallelepiped. In [6] and [7] new formulations of 
the optimal control problem for the solidification process were 
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proposed and studied. In [6] were considered three versions of 
the new model of considered industrial setup in the case of a 
mold of simplest geometry - a parallelepiped. In [7] the new 
formulations of the optimal control problem are considered for 
the case of a mold of complex geometry.  

The present work is the final one. Here is represented the 
complete algorithm, which is based on the indicated above 
three basic elements, and with the aid of which the problem in 
question was solved very effectively.  

II. STATEMENT OF THE PROBLEM 
The problem under consideration models the solidification 

of molten metal in casting. It is known that the quality of the 
resulting casting depends on how the process of cooling and 
solidification of molten metal proceeds. According to 
numerous studies of this process, for a product of high quality 
to be obtained, it is desirable the shape of the phase boundary 
to be as close to a plane as possible and its speed to be close to 
a prescribed one.  

Fig. 1 represents the longitudinal projections of an actual 
mold, which is filled with liquid metal. The mold and the metal 
inside it are heated up to prescribed temperatures formT  and 

metT , respectively. Next, the object (the mold and the metal 
inside it) begins to cool gradually under varying external 
conditions.  

The solidification process is controlled using a special 
industrial setup, which consists of upper and lower parts. The 
upper part is a furnace with the object moving inside it. It is 
modeled by two vertical parallel walls joined above by a 
horizontal wall (“ceiling”). The walls and ceiling of the 
furnace are heated up to a prescribed rather high temperature. 
The lower part of the setup is a coolant representing a large 
tank filled with liquid aluminum whose temperature is 
somewhat higher than the aluminum melting point (about 
1000°K degrees). In this work we consider a version in which 
two lateral walls of the mold (on the sides where there are no 
furnace walls) are heat-insulated. This model also describes 
the situation when several molds are lined up in the furnace 
and are located near from each other.  

 

 
Fig. 1. Schematic view of the mold (two projections). 

 
The metal-filled mold is slowly immersed in the coolant. 

The liquid aluminum has a relatively low temperature, which 
causes the solidification of the metal. However, the object 
gains heat from the furnace walls, which prevents the 
solidification process from proceeding too fast. The problem is 
to choose a regime of metal cooling and solidification (such 
control parameters) at which the solidification front has a 
preset shape and moves at a speed close to the preset one.  

The computational domain of the problem (domain Q ) is 
the area of the mold and the metal inside it, Γ  is a piecewise-
smooth boundary of Q . The cooling of the metal and the 
mold is governed by the three-dimensional non-stationary heat 
equation: 
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Here, T  is the temperature of the substance at the point with 
coordinates ),,( zyx  at time t . 

The thermal conductivity has the form: 
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The heat content function ( )( )tzyxTH ,,,  is defined as 
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( ) TcTH ΦΦ= ρ2 ,  
where γ  is the specific heat of melting. 

Here, Sc , Lc , Φc , Sρ , Lρ , Φρ , Sk , Lk , Φk , 1T , 

2T , and 3T  are prescribed constants (the indices L  and S  
denote the liquid and solid phases, respectively). The 
thermodynamic coefficients (the density of the substance, the 
heat capacity, and thermal conductivity) have a jump at the 
metal–mold interface. Two conditions are required to hold at 
this surface; namely, the temperature and the heat flux must be 
continuous. The metal can be simultaneously in two phases: 
solid and liquid. The domain separating the phases is 
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determined by the narrow range of temperatures [ ]21,TT , in 
which the thermodynamic coefficients and the content function 
vary rapidly.  

A distinctive feature of this problem is that the substance 
under study undergoes phase transitions (from liquid to solid 
states and back) accompanied by heat release or absorption 
(Stefan-type problems). The law of motion of the phase 
boundary is not known beforehand and has to be determined. 

All the heat exchange conditions on the boundary Γ  of Q  

can be written in the general form ϕβα =+   nTT .  Here, α , 

β  and ϕ  are given functions of the coordinates ),,( zyx  of 

a point on Γ  and of the temperature T , while nT  is the 

derivative of the temperature T  in the outward normal 
direction n  to Γ .  

The cooling of the mold and the metal inside it occurs due 
to the interaction of the object with its surroundings. It is 
important to note that the different parts of its outer boundary 
are under different thermal conditions (i.e., the laws of heat 
transfer with the surroundings are different in these parts). 
Moreover, the parts themselves and the thermal conditions 
affecting them vary with time.  

If the point is in the molten aluminum, then in this case it is 
necessary to take into account:  

1) the heat lost by the body due to its own radiation; 
2) the heat gained from the surrounding liquid aluminum; 
3) the heat transfer due to conduction between the liquid 

aluminum and the body. 
If the point is outside the molten aluminum, then in this case 

it is necessary to take into account:  
1) the heat lost by the body due to its own radiation;  
2) the heat gained from the emitting walls of the furnace;  
3) the heat gained from the emitting surface of the liquid 

aluminum;  
4) the heat gained from the emitting surface of roof. 
One of the basic mechanisms of heat transfer in this problem 

is thermal radiation. To determine the heat flux coming to the 
surface of the object from hot surfaces, it is necessary to solve 
a rather complicated boundary-value problem. In [8] a 
mathematical model of heat transfer process due to radiation 
from the heated surface to the mold is proposed. During the 
simulation of this process the special features of the considered 
experimental setup were taken into account. An algorithm for 
calculating the heat flux based on the constructed model was 
proposed. It is based on the final formula, obtained from the 
integration of general relations, which describe the 
propagation of thermal radiation.  

The evolution of the phase boundary is affected by many 
parameters (for example, the furnace temperature, the 
temperature of the liquid aluminum, the depth to which the 
object is immersed in the liquid aluminum, the velocity of the 
object relative to the furnace, etc.). Of special interest in 
practice is the dependence of the phase boundary on the 
velocity of the object moving in the furnace. For this reason, as 

a control function we use the velocity of the mold in the 
furnace. If we do not control the speed of the motion of the 
object, then “bubbles” of liquid metal form and collapse inside 
the casting during the process of crystallization, which results 
in a casting of poor quality.  

To find a control function satisfying the technological 
requirements, we formulate an optimal control problem for 
metal solidification. This problem consists of choosing a mode 
of metal cooling and solidification in which the solidification 
front has a preset shape (it is desirable the front to be a plane 
orthogonal to the vertical axis of the object) and moves at a 
speed close to the preset one.  

The velocity of the mold relative to the furnace (control 
function) is determined by solving the following optimal 
control problem. We introduce two classes of functions: 1

~K  

and 2
~K . Let *A  and *B  be a priori given constants (more 

specifically, *A  is the z -coordinate determining the initial 

position of the object relative to the furnace and *B  is the z -
coordinate determining the position of the object relative to the 
furnace at the maximum depth to which the object is immersed 
in the coolant). A function )(~ tu  is said to belong to the class 

1
~K  if )(~ tu  is continuous and piecewise smooth for 

),0[ ∞∈t  and satisfies the constraints ** )(~ BtuA ≤≤  and 

*)0(~ Au = . The class 2
~K  consists of all piecewise 

continuous functions )(tu , ),0[ ∞∈t , that are obtained by 

differentiating functions from 1
~K . A valid control will be a 

function of class 2
~K .  

A major element of any optimal control problem is the cost 
functional. The studies dedicated to the choice of a functional 
satisfying the technological requirements for the process of 
metal solidification are carried out. The basic cost functional is 
defined as:  

[ ] .)(),,(
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Here 1t  is the time at which the solidification front is initially 

formed, 2t  is the time at which the metal becomes completely 
solid, )(tSS =  is the projection of the phase boundary onto 
a plane perpendicular to the vertical axis of the mold, 
( )),,(,, tyxZyx pl  are the actual coordinates of points on 

the phase boundary at the time t, and ( ))(,, * tzyx  are the 
desired coordinates of points on the phase boundary at the time 
t. The coordinates of the phase boundary are determined from 
the following equation: plpl TttutyxZyxT =))),(,,,(,,( , 

where plT  is the temperature of the solidification of metal, 

which is equal to  2/)( 21 TTTpl += .  
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Functional )(uI  is the time-average rms deviation of the 
actual phase boundary from the desired one. It is designed to 
ensure that the front velocity is close to the desired one and 
provides the flattening of this surface. The optimal control 
problem is to determine a control 2

~Ku(t)∈  that minimizes 
the cost functional.  

III. ALGORITHM FOR DETERMINING THE TEMPERATURE FIELD 
OF THE OBJECT  

The first element of the solution of the optimal control 
problem is the direct problem (finding the temperature at each 
point and determining the solidification front). The numerical 
algorithm for solving the direct problem is based on the heat 
balance equation. Additionally, we proceed from the problem 
formulation in terms of temperature to that in terms of heat 
content.  

The object under study is approximated by a body 
consisting of a finite number of parallelepipeds. This body is 
mentally placed in an auxiliary parallelepiped whose sizes 
coincide with those of the object.  

We introduce a coordinate system tied to the moving mold. 
The Oz  axis is directed vertically upward, the Ox  axis lies 
in a horizontal plane and is directed from left to right, and the 
Oy  axis is chosen so that Oxyz  is a right-hand coordinate 

system. The origin O  is placed at the front bottom left vertex 
of the auxiliary parallelepiped.  

The time grid is defined by introducing grid nodes 

{ } Jjt j ,0, = , with the steps Jjtt jjj ,1,1 =−= −τ . 
We also introduce two spatial grids (generally non-uniform): 
the basic grid { } Nnxn ,0, = ;  { } Iiyi ,0, = ; 

{ } Llzl ,0, = ;   with the mesh sizes:  

;1,0,1 −=−= + Nnxxh nn
x
n     ;1,0,1 −=−= + Iiyyh ii

y
i  

1,0,1 −=−= + Llzzh ll
z
l ; 

and the auxiliary grid  

;~;,1;2/~;~
11100 NN

x
nnn xxNnhxxxx ==+== +−−  

;~;,1;2/~;~
11100 II

y
iii yyIihyyyy ==+== +−−  

.~;,1;2/~;~
11100 LL

z
lll zzLlhzzzz ==+== +−−   

The basic grid is constructed so that all the outer surfaces of 
the approximating body and all the metal-mold interfaces are 
coordinate surfaces of this grid. Note that each of M  
parallelepipeds that comprise the object contains points 
( )lin zyx ,,  of the basic grid for which )()( ** mNnmn ≤≤ ,  

)()( ** mIimi ≤≤ ,  )()( ** mLlml ≤≤ ,   Mm ,1= . (For the 
object shown in Fig. 1, 5=M .)  

The surfaces of the auxiliary grid are parallel to those of the 
basic grid, while the nodes of the former lie at the midpoints of 
the segments joining the nodes of the latter. The planes 

nxx ~= ,  iyy ~= ,  and  lzz ~=   divide the object into 
elementary cells. An elementary cell is assigned the indices 
( )lin ,,  if the cell vertex nearest to the origin coincides with 

the grid point ( )lin zyx ~,~,~ . The volume of such an 

elementary cell is denoted by nilV  and its outer surface by 

nilS . Let’s denote the average temperature in the cell as 

( )tTnil .  
Any elementary cell is either completely filled with a single 

medium (metal or mold) or some part of it is filled with one 

medium and the remaining part with the other. Let 1
nilV  

denote the part of nilV  filled with metal and 2
nilV  denote the 

part of nilV  filled with the mold material. Similarly, 1
nilS  is 

the part of nilS  that is adjacent to 1
nilV  and 2

nilS  is the part 

of nilS  that is adjacent to 2
nilV .  

If the object is a parallelepiped, all the elementary cells are 
also parallelepipeds (Fig. 2a). If the object is of complex 
geometry, then, at the interfaces of different parts of the object, 
there arise new elementary cells of complex shape that were 
not encountered earlier. They have the form shown in Fig. 
2b,c. Such cells always have faces on the outer boundary of 

the mold. As a result, the configuration of 2
nilS  becomes more 

complex. The complex configuration of the cells must be 
considered when determining heat fluxes in such cells.  

 

 
Fig. 2 Forms of computational cells 

 
The numerical solution of the direct problem is based on the 

heat balance equation. For the cell indexed by ( )lin ,, , this 
equation has the form  
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( )( ) ( )( )nilnil tTtTK n
~~

2 ⋅  are the heat flux densities through the 

cell surface for the metal and the mold, respectively. 
Integration of the left part of last equality gives  
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Next, the formulation of the boundary value problem in 
terms of temperature is reformulated in terms of enthalpy. The 
considered computational domain is inhomogeneous (contains 
metal and the material of the form). In order to better take into 
account the geometry of cells, and how they are filled, the 
concept of the so-called “total density of heat content” in the 
cell is introduced. Let nilnilnil VVM /1=  be the volume 
fraction of the metal in the elementary cell indexed by 
( )lin ,, , and let nilnilnil VV /2=Φ  be the volume fraction of 
the mold in this cell. Denote by 

( ) ( )j
nilnil

j
nilnil

j
nil THTHME 21 Φ+=  the total heat content 

density in the cell ( )lin ,,  at the time jt . Taking into account 
the relations defining )(1 TH  and )(2 TH , we obtain an 

expression for )( j
nil

j
nil TE :  
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where ΦΦΦ+= ccMa nilSSnilnil ρρ , 

( ) ΦΦΦ+−+= cTTcMb nilSSSnilnil ρλρρ )/( 2
1 , 

( )121
2 / TTTMb Snilnil −= λρ , 

ΦΦΦ+= ccMd nilLLnilnil ρρ1 , 

( )2
2 )( TccMd LLSSSnilnil ⋅−+⋅= ρρλρ . 

The temperature j
nilT  is defined as the inverse of 
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The functions ( )j
nilTK1  and ( )j

nilTK2  can also be 

expressed in terms of j
nilE :  
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11 TcE SSρ≡ ,   ( )γρ +≡ 22 TcE SS , 

( )δρ −≡ ΦΦ 33 TcE , ( )δρ +≡ ΦΦ 34 TcE , 3T<<δ . 

Function )( j
nil

j
nil TE  as a function that depends on the 

temperature in the metal behaves as a function )(1 TH , i.e. in a 
narrow temperature range [ ]21,TT  is changing very quickly, 
almost abruptly. For this reason, iterative methods for solving 
systems of equations that approximate the heat balance 
equation converge poorly.  

The temperature j
nilT  as a function that depends on the total 

density of heat content does not change so quickly, and when 
the specified conditions are satisfied, the algorithms for 
solving the direct problem are guaranteed to converge. Taking 
into account this fact, in the equality (1) let us pass from the 
variable ( )tTnil  to the variable ( )tEnil : 
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Equation (2) is the heat balance equation, written in terms of 
enthalpy function for any cell of the object being investigated. 

Equation (2) is discretized in time using the Peaceman–
Rachford scheme, two-layer implicit scheme with weights, and 
a locally one-dimensional scheme ([9], [10]). The results 
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produced by the three difference schemes were compared with 
each other. 

The locally one-dimensional scheme performs with a large 
time step (thus saving CPU time) and is easy to implement, but 
is considerably inferior to the other schemes in terms of 
accuracy. Solution using an implicit scheme with weights seem 
physically more justified. A large number of calculations of 
the direct problem was carried out at a sufficiently wide range 
of input data (the furnace temperature, the temperature of the 
liquid aluminum, the depth to which the object is immersed in 
the liquid aluminum, the velocity of the object relative to the 
furnace). All calculations have shown that the use of the 
Peaceman–Rachford scheme gives the same accuracy of the 
solution of the direct problem as the two-layer implicit scheme 
with weights, but with the aid of the Peaceman–Rachford 
scheme the direct problem is solved considerably faster (see 
[4]). This scheme has a sufficiently large time step and 
requires much less CPU time than the implicit scheme with 
weights. The Peaceman–Rachford scheme was used to solve 
the optimal control problem. 

We introduce the following notation, which is used to write 
the time discretization of (2) in a more compact form: 
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Here, +x
nilS1  denotes the part of 1

nilS  that belongs to the plane 

1
~

+= nxx , while −x
nilS1  denotes the part of 1

nilS  that belongs 

to the plane nxx ~= . The surfaces +y
nilS1 ,…, −z

nilS1 , and 
+x

nilS 2 ,…, −z
nilS 2 , are defined in a similar manner. The 

surfaces xd
nilS 2 , yd

nilS 2  and zd
nilS 2  are additional ones 

occurring in cells of complex geometry. For example, xd
nilS 2  is 

the part of 2
nilS  that belongs to the plane nxx = . When some 

or all additional surfaces are absent (in the latter case, the cell 
has the shape of a box), their surface areas are set equal to 
zero. 

The time discretization of (2) based on the Peaceman–
Rachford scheme has the form: 
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. 

Here,  

( )3/3/1 τ+=+ j
nil

j
nil tEE , ( )3/23/2 τ+=+ j

nil
j

nil tEE . 

The values 3/1+j
nilnilEV  and 3/2+j

nilnil EV  are added to and 
subtracted from the left-hand side of (3) and the result is 
divided into three equations (with splitting into the x , y  and 
z  directions) to obtain the following three subproblems: 

x -direction: 

( ) j
nilz

j
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j
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j
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y -direction: 
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3

~
3

~
3

+++++ Λ+Λ+Λ=−⋅ j
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j
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j
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z -direction: 
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. 

The thermal conductivities ( )j
nilE~1Ω  and ( )j

nilE~2Ω  on the 
internal surfaces of an elementary cell are approximated in the 
usual manner. For example, 

( ) ( ) ( ) j
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j
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1 2
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( ) ( ) ( ) j
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1
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1 ˆ
2

~
1 −

− ≡
Ω+Ω

=Ω −
. 

The notation j
lR~  and j

lR 1
~

−  for the surfaces +z
nilS1  and −z

nilS1  

and similar notation for ( )j
nilE~2Ω , namely, j

nB , j
nB 1− , j

iB̂ , 
j

iB 1
ˆ

− , j
lB~ , and j

lB 1
~

−  are introduced in a similar manner. 

Boundary conditions ϕβα =+   nTT  on the outer 
boundary Γ of the object сan be rewritten in the general form 

( ) ( )( ) .)(
ΓΓ

+= tqTTrTTK n  

Since 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )
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zy,x,
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the last expression splits into two: 
( ) ( ) ( )( ) ( )( ) ( ) 1

111   ,)( nilStqEErEE ∈+=Ω ΓΓ zy,x,βββn , 
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( ) ( ) ( )( ) ( )( ) ( ) 2
222   ,)( nilStqEErEE ∈+=Ω ΓΓ zy,x,βββn

. 

In [11] these two boundary conditions were described in 
detail and expressions for ( )( )Er β1 , )(1 tq , ( )( )Er β2 , 
and )(2 tq  were derived.  

In the above three subproblems, the outward normal 
derivatives ( )Enβ  are approximated by the formula 

( ) ( )nn ,ββ ∇=E . For example, 

,)~( ,1
2 x
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j
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nil h
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2 x
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S
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nil h
E x

nil −
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−

ββ
βn   )(,1)( ** mNmnn += . 

where ( )j
nil

j
nil Eββ = . 

We also introduce the function ),(** inL  defined as the 
number of cells of the object with the first index equal to n  
and the second index equal to i .  

Since the object is symmetric about the vertical axis and is 
located symmetrically about the furnace centerline, for 
simplicity, the algorithm is described for a quarter of the 
object. For 0=n  and 0=i , the symmetry conditions are 
used as boundary conditions.  

With the notation introduced, the spatial approximation of 
the first subproblem inside the domain under consideration can 
be written as  
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1
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+
+ =

τ
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The last relation holds for internal cells of Q  whose lateral 
faces do not belong to its outer boundary. If any of the surfaces 

+x
nilS1 , −x

nilS1 ,…, −z
nilS1  reaches the outer boundary of the 

domain, then the corresponding term in the heat balance 
equation is approximated taking into account the boundary 
conditions. For example, for 0=n , the second and fourth 
terms in the first square bracket in the last equality vanish (for 
more detail, see [11]). 

The last two subproblems are approximated in a similar 
fashion. 

The system of nonlinear algebraic equations resulting from 
the spatial approximation of the above-indicated three 
subproblems are solved consecutively in the direction x , y  
and z  by the proposed in [2] iterative method. For this reason, 
the function of the temperature )(Eβ  in these equations is 

represented in the form ( ) j
nil

j
nil

j
nil

j
nil vEuE +=β , where 
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This view of the temperature function is substituted in all 
obtained systems of equations. Further these systems of 
equations are reduced to the so-called tridiagonal matrix form 
and are solved iteratively by applying Gaussian elimination. 

Determination of the solidification front in the metal was 
carried out using the following algorithm. Let in yx , and lz  
be the coordinates of the spatial grid points. For each point 

Syx in ∈),(  (where S  is the projection of the phase 
boundary onto a plane perpendicular to the vertical axis of the 
mold) we find an index ∗l  such that one of the following 
conditions is satisfied:  
( ) ( ))()()()( 1,1,

j
lnipl

j
nil

j
nilpl

j
lni ETEETE ++ ∗∗∗∗

≤≤≤≤ ββββ 

. 

In this case we assume:  

j
nil

j
lni

j
nill

j
lnilplllj

inpl

zzTzz
tyxZ

∗∗

∗∗∗∗∗∗

−

−+−
=

+

+++

ββ

ββ

1,

11,1 )()(
),,( . 

In the computation of the direct problem primary attention is 
given to the evolution of the solidification front and to how it 
is affected by the parameters of the problem. A special 
software package [12] allowed us to take a look at the 
dynamics of the metal crystallization process. It was developed 
to visualize the results of calculation of problems, in which 
complex dynamic processes are investigated, and allows to 
reflect in a video the change of an arbitrary flat scalar field 
over time and also distinguish arbitrary planar objects and 
their boundaries, which could also be moving.  

IV. SOLVING OF THE OPTIMAL CONTROL PROBLEM 
The optimal control problem was reduced to an 

unconstrained optimization problem and was solved 
numerically with the help of gradient methods. Formulas for 
gradient evaluation are derived using the Fast Automatic 
Differentiation technique. This technique offers canonical 
formulas producing the exact value of the cost function 
gradient for a chosen discretization of the optimal control 
problem ([1]). It should be noted that other methods for 
computing the cost function gradient (for example, finite 
differences) were found to be hardly applicable to solving this 
problem.  

In [2] is estimated the processor time required to compute 
the gradient of the objective function by means of the Fast 
Automatic Differentiation technique in optimal control 
problems for thermal processes with phase transitions. Using 
the example of an optimal control problem for the melting 
process, the assertion that the time required to find the 
components of the gradient of the objective function by this 
method does not exceed the time of calculating two values of 
the function is formulated and proved.  

To calculate the gradient of the objective function using the 
Fast Automatic Differentiation technique, at first all the 
equations approximating the direct problem are written in a 
special canonical form, which is specified below.  

Let us introduce the following notation. For all 
MmmLlmIi ,1,)(,0),(,0 ** ===  let ( )mX , 

( )fX , and ( )dX  denote the )2)(( * +mN -dimensional 

vectors:  
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For all MmmLlmNn ,1,)(,0),(,0 ** ===  let 

( )mY , ( )fY , and ( )dY  denote the )2)(( * +mI -dimensional 
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For all MmmIimNn ,1,)(,0),(,0 ** ===  let 

( )mZ , ( )fZ , and ( )dZ  denote the )2)(( * +mL -dimensional 

vectors: 
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In these and subsequent formulas, the subscripts m  and f  
denote the metal and the mold, respectively. The index d  says 
that the right-hand side of the corresponding equality is 
calculated at the center of an additional surface for cells of 
complex geometry.  

With the notation introduced, the approximations of the 
above three subproblems can be written for all 1,0 −= Jj  as 
follows:  
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MmmLlmIimNn ,1,)(,0),(,0),(,0 *** ==== . 
Define the two-dimensional vectors 
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where MmmLlmIimNn ,1,)(,0),(,0),(,0 *** ==== . 

Note that −
+

+ = x
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We also introduce notation for the following scalar products 
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nil YSY ,~ −= , ),(,0 * mIi =  

( )( )j
lmInmf

y
lmnI

j
lmIn YSY

,1)(,)(,1)(, *** ,~
+

+
+

= ,  

)(,0),(,0 ** mLlmNn == ; 

( )( )j
nilmf

z
nil

j
nil ZSZ ,~ −= , ),(,0 * mLl =  

( )( )j
mLnimf

z
mniL

j
mLni ZSZ

1)(,)(1)(, *** ,~
+

+
+

= ,  

)(,0,)(,0 ** mIimNn == . 
With the notation introduced, the last three subproblems can 

be written in the following compact form: 
x -direction: 

 

( )( )+⋅+−+= +++
+

++ 3123131
,1

131 ~~ j
nild

xd
nil

j
nil

j
iln

j
nil

j
nil

j
nil XSXXwEE  

( )( )+⋅+−+ +
+ j

nild
yd

nil
j

nil
j

lin
j

nil YSYYw 2
,1,

1 ~~  

( )( )j
nild

zd
nil

j
nil

j
lni

j
nil ZSZZw ⋅+−+ +

+ 2
1,

1 ~~ , (4) 

 
y -direction: 
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( )( )+⋅+−+= +++
+

+++ 3/223/23/2
,1,

13/13/2 ~~ j
nild

yd
nil

j
nil

j
lin

j
nil

j
nil

j
nil YSYYwEE  

( )( )+⋅+−+ +++
+

+ 3123/13/1
,1

1 ~~ j
nild

xd
nil

j
nil

j
iln

j
nil XSXXw  

( )( )3123/13/1
1,

1 ~~ +++
+

+ ⋅+−+ j
nild

zd
nil

j
nil

j
lni

j
nil ZSZZw , (5) 

 
z -direction: 

 

( )( )+⋅+−+= +++
+

+++ 1211
1,

13/21 ~~ j
nild

zd
nil

j
nil

j
lni

j
nil

j
nil

j
nil ZSZZwEE  

( )( )+⋅+−+ +++
+

+ 3/223/23/2
,1

1 ~~ j
nild

xd
nil

j
nil

j
iln

j
nil XSXXw  

( )( )3/223/23/2
,1,

1 ~~ +++
+

+ ⋅+−+ j
nild

yd
nil

j
nil

j
lin

j
nil YSYYw , (6) 

 
MmmLlmIimNn ,1,)(,0),(,0),(,0 *** ==== ; 

1,0 −= Jj . 
Equations (4)-(6) are the canonical form of the chosen 

discrete version of the direct problem.  
The cost functional )(uI  is approximated by a function 

( )uF  with the help of the trapezoidal formula:  

( ) ( ) 







τ+τ+τ+τ

−
=≅ ∑

−

+=

++
1

1

11

12

2

1

2211

)(2
1)(

j

jj

jjjjjjj fff
tt

uFuI . 

Here, 1j  is the index of the time grid point corresponding to 

the time 1t ; 2j  is the index of the time grid point 

corresponding to the time 2t ;  

( ) y
i

x
n

n

nn

i

ii

jj
ni

j hhzZf ∑ ∑
= =

∗
−=

2

1

2

1

2 ; 

),,( j
inpl

j
ni tyxZZ = ,   )( jj tzz ∗∗ = ;   

1
n , 

2
n , 

1
i , and 

2
i  

are the indices of the spatial grid points along the OX  and 
OY  axes, respectively, that define the boundaries of the cross 
section (the largest cross section of the metal filled part of the 
object); i.e., )()(ˆ

1212 iinn yyxxSmes −×−= . The value 

),,( j
inpl tyxZ  is defined at the end of the third section.  

According to the Fast Automatic Differentiation technique, 
each equation of the chosen discrete version of the direct 
problem (4)–(6) is written as  

( ) ( ) ( )( )jlinjlin
j

nil UjlinE ,,,,,, ,,,,, ΛΨ= . (7) 

Here, ( )jlin ,,,Λ  denotes the set of all ν
αβγE  (with all 

indices α , β , γ , and ν ,) that enter into the right-hand side 

of (7), and ( )jlinU ,,,  is the set of all components of νu  

( )( )νν = tuu  that enter into the right-hand side of (7). 

Although the control ju  depends only on the time index j , 

the set ( )jlinU ,,,  is equipped with the spatial indices n , i , 

and l  to stress that the effect of this control is different at 
different spatial points.  

The components of the gradient of ( )uF  are computed 

from the components of the vector { }ju  by using the 
following relation, which is a generalization of that used in [1]: 

( )( ) ,,,,,,
),,,(),,,(

),,,(),,,(∑
∈

ΛΨ+

+
∂
∂

=

jlin

j
K

T
u

jj

pU

u
F

ud
Fd

νγβα

ν
αβγνγβανγβανγβα

(8) 

where ν
αβγp  are the conjugate variables determined by 

solving the system of linear algebraic equations 

( ) ( ) ( )( )
( ) ( )

,,,,,,
,,,,,,

,,,,,,∑
∈

ΛΨ+

+
∂
∂

=

jlin

j
nilQ

T
E

j
nil

j
nil

pU

E
Fp

νγβα

ν
αβγνγβανγβανγβα

(9) 

MmmLlmIimNnJj ,1,)(,0),(,0),(,0,,1 *** ===== . 

The index sets ( )jlinQ ,,,  and ( )jlinK ,,,  are given by 

( ) ( ) ( ){ }νγβανγβα ,,,,,, :,,, Λ∈= j
niljlin EQ , 

( ) ( ) ( ){ }νγβανγβα ,,,,,, :,,, UuK j
jlin ∈= . 

System (9) for computing the conjugate variables j
nilp  is 

usually called the adjoint problem.  
We introduce the following notation for some derivatives, 

which is used to represent the adjoint problem in a compact 
form:  

( ) j
nil

j
nilj

nilx E
XD

∂
∂

=+

~
,   ( ) j

iln

j
nilj

nilx E
XD

,1

~

−
− ∂

∂
= ,    )(,1 * mNn = , 

( ) j
il

j
ilj

ilx E
XD

0

0
0

~

∂
∂

=+
,         ( ) 00 =− ilxD , 

( ) 0,1)(* =++
j

ilmNxD , ( ) j
ilmN

j
ilmNj

ilmNx E
X

D
)(

,1)(
,1)(

*

*

*

~

∂

∂
= +

+− , 

∀  )(,0 * mIi =   and ∀   )(,0 * mLl =          ),1( Mm = ; 
 

( ) j
nil

j
nilj

nily E
YD

∂
∂

=+

~
,   ( ) j

lin

j
nilj

nily E
YD

,1,

~

−
− ∂

∂
= ,    )(,1 * mIi = , 

( ) j
ln

j
lnj

lny E
YD

0

0
0

~

∂
∂

=+
,         ( ) 0

0
=−

j
lnyD , 

( ) 0
,1)(, * =

++
j

lmInyD , ( ) j
lmnI

j
lmInj

lmIny E
Y

D
)(

,1)(,
,1)(,

*

*

*

~

∂

∂
= +

+− ; 
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∀  )(,0 * mNn =  and ∀  )(,0 * mLl =        ),1( Mm = ; 
 

( ) j
nil

j
nilj

nilz E
ZD

∂
∂

=+

~
,   ( ) j

lni

j
nilj

nilz E
ZD

1,

~

−
− ∂

∂
= ,      )(,1 * mLl = , 

( ) j
ni

j
nij

niz E
ZD

0

0
0

~

∂
∂

=+ ,       ( ) 00 =−
j

nizD , 

( ) 01)(, * =++
j

mLnizD , ( ) j
mniL

j
mLnij

mLniz E
Z

D
)(

1)(,
1)(,

*

*

*

~

∂

∂
= +

+− ; 

∀  )(,0 * mNn =  and ∀   )(,0 * mIi =        ),1( Mm = ; 
 

( ) j
nil

j
nildj

nilxd E
XD

∂
∂

=
)( , ( ) j

nil

j
nildj

nilyd E
YD

∂
∂

=
)( , 

( ) j
nil

j
nildj

nilzd E
ZD

∂
∂

=
)( . 

MmmLlmIimNn ,1,)(,0),(,0),(,0 *** ==∀=∀=∀ . 
In [11] a detailed description of the conjugate equations is 

given, which are obtained in the case of studying the object of 
the simplest form - a parallelepiped. Here we give a compact 

form of the adjoint problem for calculating the quantities j
nilp  

in the case of the object of complex geometric form, which is 
represented in Fig. 1. The compact form of these equations is 
possible, if we formally assume:  

,0
1)(,1,

,1)(,,1,,1)(,1

*

**

===

====

+−

+−+−

j
mLni

j
ni

j
lmIn

j
ln

j
ilmN

j
il

pp

pppp
 

,03/1
1)(,

3/1
1,

3/1
,1)(,

3/1
,1,

3/1
,1)(

3/1
,1

*

**

===

====

+
+

+
−

+
+

+
−

+
+

+
−

j
mLni

j
ni

j
lmIn

j
ln

j
ilmN

j
il

pp

pppp
 

,03/2
1)(,

3/2
1,

3/2
,1)(,

3/2
,1,

3/2
,1)(

3/2
,1

*

**

===

====

+
+

+
−

+
+

+
−

+
+

+
−

j
mLni

j
ni

j
lmIn

j
ln

j
ilmN

j
il

pp

pppp
 

 

).,1,,1
,)(,0),(,0),(,0( ***

MmJj
mLlmIimNn

==

===  

Initial Conditions for the Conjugate Variables 
To obtain the conjugate variables at the last time level 

Jj = , the following system of linear algebraic equations is 

solved for J
nilp  with all )(,0 * mNn =∀  and all 

)(,0 * mIi =∀ ,  ( Mm ,1= ): 

( ) ( )
( ) ( )

( ) ,/2

1,1,1,

1,1,1,

J
nil

J
nil

J
nilzd

zd
nil

J
nil

J
lni

J
lniz

J
lni

J
nil

J
nilz

J
nil

J
nil

J
lniz

J
nil

J
lni

J
nilz

J
lni

J
nil

EFpDSw

pDwpDw

pDwpDwp

∂∂++

+−−

−+=

++−++

+−−+−

 (10) 

),(,0 ** inLl = . 
 

First Subproblem for the Conjugate Variables  

The conjugate variables 3/2+j
nilp  at the time sublevel 

)3/2( +j ,  0,1−= Jj , are computed by solving the 
following linear algebraic system of equations for all 

)(,0 * mNn =  and all ,)(,0 * mLl =   ( Mm ,1= ): 

( )
( ) ( )( )
( )

( ) ,3/23/23/221

3/2
,1,

3/2
,1,

1
,1,

3/23/23/2
,1,

1

3/2
,1,

3/21
,1,

3/2

++++

+
+

+
+−

+
+

++
+

+
+−

+

+
−

+
+

+
−

+

++

+−

−−+

+=

j
nil

j
nil

j
nilyd

yd
nil

j
nil

j
lin

j
liny

j
lin

j
nil

j
nily

j
liny

j
nil

j
lin

j
nily

j
lin

j
nil

pDSw

pDw

pDDw

pDwp

ξ

 (11) 

where 

( )
( ) ( )( )
( )
( )
( ) ( )( )
( )

( )

( ) ,3/2
13/221

13/221

1
,1,

3/2
,1,

1
,1,

13/23/2
,1,

1

1
,1,

3/21
,1,

1
,1

3/2
,1

1
,1

13/23/2
,1

1

1
,1

3/21
,1

13/2

+
+++

+++

+
+

+
+−

+
+

++
+

+
+−

+

+
−

+
+

+
−

+
+

+
+−

+
+

++
+

+
+−

+

+
−

+
+

+
−

++

∂
∂

++

++

+−

−−+

++

+−

−−+

++=

j
nil

j
nil

j
nilyd

yd
nil

j
nil

j
nil

j
nilxd

xd
nil

j
nil

j
lin

j
liny

j
lin

j
nil

j
nily

j
liny

j
nil

j
lin

j
nily

j
lin

j
iln

j
ilnx

j
iln

j
nil

j
nilx

j
ilnx

j
nil

j
iln

j
nilx

j
iln

j
nil

j
nil

E
FpDSw

pDSw

pDw

pDDw

pDw

pDw

pDDw

pDwpξ

 

.)(,0 * mIi =  
 

Second Subproblem for the Conjugate Variables  

The conjugate variables 3/1+j
nilp  at the time sublevel 

)3/1( +j ,  0,1−= Jj , are computed by solving the 
following linear algebraic system of equations for all 

)(,0 * mIi =  and all ,)(,0 * mLl =   ( Mm ,1= ): 

( )
( ) ( )( )
( )

( ) ,3/13/13/121

3/1
,1

3/1
,1

1
,1

3/13/13/1
,1

1

3/1
,1

3/11
,1

3/1

++++

+
+

+
+−

+
+

++
+

+
+−

+

+
−

+
+

+
−

+

++

+−

−−+

+=

j
nil

j
nil

j
nilxd

xd
nil

j
nil

j
iln

j
ilnx

j
iln

j
nil

j
nilx

j
ilnx

j
nil

j
iln

j
nilx

j
iln

j
nil

pDSw

pDw

pDDw

pDwp

ξ

 (12) 
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( )
( ) ( )( )
( )

( )
( )
( ) ( )( )
( )

( ) ,/ 3/13/23/121

3/2
1,

3/1
1,

1
1,

3/23/13/1
1,

1

3/2
1,

3/11
1,

3/23/121

3/2
,1

3/1
,1

1
,1

3/23/13/1
,1

1

3/2
,1

3/11
,1
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+
+

+
+−

+
+

++
+

+
+−

+

+
−

+
+

+
−

+++

+
+

+
+−

+
+
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+

+
+−

+

+
−

+
+

+
−

++

∂∂++

+−

−−+

++

++

+−

−−+

++=

j
nil

j
nil

j
nilzd

zd
nil

j
nil

j
lni

j
lniz

j
lni

j
nil

j
nilz

j
lniz

j
nil

j
lni

j
nilz

j
lni

j
nil

j
nilxd

xd
nil

j
nil

j
iln

j
ilnx

j
iln

j
nil

j
nilx

j
ilnx

j
nil

j
iln

j
nilx

j
iln

j
nil

j
nil

EFpDSw

pDw

pDDw

pDw

pDSw

pDw

pDDw

pDwpξ

 

.)(,0 * mNn =  
 

Third Subproblem for the Conjugate Variables  

The conjugate variables j
nilp  at the j th time level, 

( 0,1−= Jj ), are computed by solving the following linear 

algebraic system of equations for all )(,0 * mIi =  and all 

,)(,0 * mLl =   ( Mm ,1= ): 

( )
( ) ( )( )
( )

( ) ,2

1,1,1,

1,

1,1,

j
nil

j
nil

j
nilzd

zd
nil

j
nil

j
lni

j
lniz

j
lni

j
nil

j
nilz

j
lniz

j
nil

j
lni

j
nilz

j
lni

j
nil

pDSw

pDw

pDDw

pDwp

ξ++

+−

−−+

+=

++−+

++−

−+−

 (13) 
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1
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1

3/1
1,

1
1,

3/121

3/1
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1
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3/1
,1,

1

3/1
,1,

1
,1,

3/1
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j
nilzd

zd
nil

j
nil

j
lni

j
lniz

j
lni

j
nil

j
nilz

j
lniz

j
nil

j
lni

j
nilz

j
lni

j
nil

j
nilyd

yd
nil

j
nil

j
lin

j
liny

j
lin

j
nil

j
nily

j
liny

j
nil

j
lin

j
nily

j
lin

j
nil

j
nil

E
FpDSw

pDw

pDDw

pDw

pDSw

pDw

pDDw

pDwp

∂
∂
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−−+
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−−+
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++−

+
+

+
++−

+

+
−+
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−
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+

+
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+

+
−+
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+ξ

 

),(,0 ** inLl = . 
The obtained systems of linear equations for the conjugate 

variables are the discrete version of the continuous adjoint 
problem, which is consistent with the approximations of the 
direct problem and of the cost functional. These systems of 
linear algebraic equations were solved using tridiagonal 
Gaussian elimination (see [9]). The sequential solution to these 
three subproblems at 0,Jj =  produces conjugate variables in 

the following order: J
nilp , 3/2)1( +−J

nilp , 
3/1)1( +−J

nilp , 
1−J

nilp ,…, 
3/11+

nilp , 
1
nilp , 

3/20+
nilp , 

3/10+
nilp , 

MmmLlmIimNn ,1,)(,0),(,0),(,0 *** ==== . 
The derivatives ( ) j

nilxD + , ( ) j
nilxD − ,…, and the derivatives 

of the cost function j
nilEF ∂∂ /  with respect to the state 

variables are computed in a similar manner, as was shown in 
[11]. 

 
The Gradient of the Cost Function of the Discrete 

Optimal Control Problem 
The control function ( )tu  in the optimal control problem is 

defined as the time dependent displacement of the mold in the 
furnace, namely, the z  coordinate ( )tZSou  of the furnace’s 
lower wall. This parameter is involved in the expressions for 

)(1 tq  and )(2 tq  for cells that are outside the liquid 

aluminum. The control function ( )tu  is approximated by a 
piecewise linear function. More specifically, the control 
function on the time interval [ ]1, +jj tt  has the form 

( ) ( ) 11 ++ == jj ZtZtu SouSou . Therefore, 
1

1
3/2

1
3/1

1
+++ == jjj qqq  and 1

2
3/2

2
3/1

2
+++ == jjj qqq . 

According to the Fast Automatic Differentiation technique 
(8), the components of the function gradient are calculated by 
the formula 
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Since ( )uF  does not depend explicitly on the control 

vector { }ju , we have 0/ =∂∂ juF . The derivatives 
involved in last formula are calculated as described in [11]. 
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Note that the gradient of the cost function calculated using 
the above formula is exact for the chosen approximation of the 
optimal control problem. 

The problem of optimal control has been solved for various 
values of the basic parameters of the crystallization process 
([7]). One version of the solution of the formulated 
optimization problem is given below. 

The computations were performed for a mold whose cross 
sections are presented in Fig. 1. Its sizes and other parameters 
of the problem were given in [13]. The temperature of the 
furnace walls was set to 1920 ºК. The coordinate of the 
required phase boundary varied with time at a constant 
velocity of 2 mm/min. The initial control was specified as the 
displacement of the mold at the constant velocity equal to 25 
mm/min (Fig. 3). The corresponding cost functional was 

56.8)( 0 =uI . After the optimization the cost functional value 
decreased by a factor more than 3500 and became equal to 

0024.0))(( =tuI opt . The optimal control is shown in Fig. 3. 

Also, the phase boundary was substantially flattened and at the 
same time moved at the required speed. Using this control the 
actual phase boundary nearly coincided with the required one. 

 

 
Fig. 3 Displacement of the mold as a function of time 

 
The problem of controlling the phase boundary evolution in 

the course of solidification of metals with different 
thermodynamic properties is studied in [14]. The numerical 
results showed that the actual phase boundary under the found 
optimal control nearly coincides with the desired one. Thus, 
we can conclude that the approach proposed in this paper for 
the control of the phase boundary evolution in solidification is 
effective and can be applied to materials with various 
thermodynamic properties. 
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